VISION-DMD: Clinical development of an innovative designer drug for the rare disease Duchenne Muscular Dystrophy (DMD).

Olsen, C.¹; Clemens, P.R.²; Damsker, J.³; Conklin, L.³; Smith, A.⁴; McCall, J.³; Guglieri, M.⁵; Head, R.¹; Athanasiou, D.⁶; Vroom, E.⁶; Morgenroth, L.⁴; Haberlova, J.⁷; Demotes-Mainard, J.⁸; Crow, R.⁵; Klager, S.⁸; Arrieta, A⁴; Jusko, W.⁹; Schwartz, B.¹⁰, Mengle-Gaw, L.¹⁰; Jaros, M.¹¹; Shale, P.¹¹; Hoffman, E.P.³ ¹Ceratium, UK; ²University Pittsburgh USA and CINRG network; ³ReveraGen BioPharma, UK/USA; ⁴TRiNDS LLC USA; ⁵John Walton Muscular Dystrophy, lesearch Centre, Newcastle University, UK; ⁶United Parent Project Muscular Dystrophy, lesearch Centre, Newcastle University, UK; ⁶United Parent Project Muscular Dystrophy, lesearch Centre, Newcastle University, UK; ⁶United Parent Project Muscular Dystrophy, lesearch Centre, Newcastle University, UK; ⁶United Parent Project Muscular Dystrophy, lesearch Centre, Newcastle University, UK; ⁶United Parent Project Muscular Dystrophy, lesearch Centre, Newcastle University, UK; ⁶United Parent Project Muscular Dystrophy, lesearch Centre, Newcastle University, UK; ⁶United Parent Project Muscular Dystrophy, lesearch Centre, Newcastle University, UK; ⁶United Parent Project Muscular Dystrophy, lesearch Centre, Newcastle University, UK; ⁶United Parent Project Muscular Dystrophy, lesearch Centre, Newcastle University, UK; ⁶United Parent Project Muscular Dystrophy, lesearch Centre, Newcastle University, UK; ⁶United Parent Project Muscular Dystrophy, lesearch Centre, Newcastle University, UK; ⁶United Parent Project Muscular Dystrophy, lesearch Centre, Newcastle University, UK; ⁶United Parent Project Muscular Dystrophy, lesearch Centre, Newcastle University, Newcastl Netherlands; ⁷Fakultni Nemocnice v Motole; Czech Republic; ⁸ECRIN, France; ⁹State University of New York-Buffalo USA; ¹⁰The Camden Group LLC USA ¹¹Summit Analytical USA

VISION-DMD is a collaborative project undertaking Phase 2 Clinical Trials of Vamorolone - an Innovative Steroid-like Intervention for Duchenne Muscular Dystrophy.

Duchenne Muscular Dystrophy

- 1:5000 male births worldwide
- Onset is usually between 2 and 6 years of age
- Caused by mutations in the dystrophin gene

VISION-DMD

Project website: www.vision-dmd.info

- Progressive muscle weakness and wasting
- Early death from cardiorespiratory failure
- Treatments generally palliative in nature

DMD muscle

Glucocorticoids – Standard of Care for DMD

- Prednisone and deflazacort are the only treatment option for DMD that is independent of mutation type
- Mechanism of action is as an anti-inflammatory
- Glucocorticoids improve muscle strength, prolong ambulation, delay respiratory and orthopaedic complications and very likely prolong survival

<u>Glucocorticoids show severe safety concerns</u>: Multiple side effects detract from patient quality of life, lead to variation in practice

Vamorolone: A first-in-class dissociative steroid

- ✓ An innovative steroid-like drug designed to retain or improve glucocorticoid anti-inflammatory efficacy
- Mineralocorticoid receptor antagonist additional efficacy \checkmark
- ✓ Reduced side effects
- Membrane stabilizing activity
- ✓ Better safety profile enables higher dosing

Phase 1 clinical trial in adult volunteers

- Pharmacokinetic (PK) data in single and multiple ascending doses up to 20 mg/kg/day for 14 days: strong adherence to dose linearity and dose proportionality
- No drug accumulation observed, consistent with short half-life

Phase 2b study - Recruiting May 2018

- Randomised, Double-blind, Parallel Group, placebo and active controlled study
- >30 sites: EU (18), USA (9), Canada (4), Australia (2), Israel (1)
- 120 steroid naïve genetically confirmed DMD boys 4-<7 years 24-week placebo and active controlled treatment period 1 followed by 24 week extension
- No adverse events precluding further escalations in dosing observed
- Safety pharmacodynamics (PD) biomarker studies showed loss of insulin resistance, loss of bone safety concerns, increased window for adrenal suppression
- Published: Hoffman et al. 2018; *Steroids*

Phase 2a in 4 to <7 years DMD boys

Phase 2a: Multiple ascending dose, 2 weeks on, 2 weeks washout - complete Phase 2a extension: 6 months at same dose - complete Phase 2a Long-term extension: 2 years with dose escalations permitted - ongoing

- 48 patients recruited at 11 Cooperative International Neuromuscular Research (CINRG) sites: USA (5), Canada (1), UK (1), Australia (2), Israel (1), Sweden (1)
- Four dose groups: 0.25, 0.75, 2.0, 6.0 mg/kg/day (12 patients/dose group)
- All doses well tolerated; PK and metabolites in DMD children similar to healthy adults (Phase 1)
- Considered safe to 6.0 mg/kg/day (~10x typical prednisone dose)

- Primary efficacy outcome: time to stand
- Primary safety outcome: change in body mass index
- Exploratory biomarkers and muscle MRI

Primary Objectives

- 1. To compare the efficacy of vamorolone administered orally at daily doses of 2 mg/kg and 6 mg/kg over a 24-week treatment period vs. placebo in ambulant boys ages 4 to <7 years with DMD
- 2. To evaluate the safety and tolerability of vamorolone administered orally at daily doses of 2 mg/kg and 6 mg/kg in ambulant boys ages 4 to <7 years with DMD.

Secondary Objectives

- 1. To compare the safety of vamorolone over a 24-week treatment period vs. prednisone
- 2. To compare the efficacy of vamorolone over a 24-week treatment period vs. prednisone
- 3. To compare the efficacy of 2 mg/kg vamorolone vs. 6 mg/kg vamorolone over a 24 week treatment period
- 4. To compare the efficacy of 2 mg/kg vamorolone vs. 6 mg/kg vamorolone over a 48 week treatment period vs. untreated DMD historical controls
- 5. To compare the efficacy of 2 mg/kg vamorolone vs. 6 mg/kg vamorolone over a 48 week treatment period vs. prednisone treated DMD historical controls
- 6. To evaluate the population pharmacokinetics (PK) of vamorolone at daily doses of 2 mg/kg and 6 mg/kg in ambulant boys ages 4 to <7 years with DMD

Vamorolone, 2.0 mg/kg/day \rightarrow

No Subjects/ **Treatment period 1** Group group

30

Treatment period 2

Vamorolone, 2.0 mg/kg/day

High retention of patients through sequential studies (95% in LTE)

